
Data Structures and Abstractions

Pointers &
Parameters

Lecture 2

Error Types Reminder
• Don’t forget the different error types when coding.

• Debugging is an absolute necessity when coding and even more so when
coding pointers, so discussing this briefly here is appropriate.

• There are five types of common errors:
– Syntax errors are those that prevent your code from compiling because of

incorrect use of language grammar.

– Semantic errors are errors in meaning. For example, if you have an apple object
and you try to add to an orange object. Much more common ones are when
you try to assign a float value to an integer variable. These can also be called
type errors.

– When your code compiles and your program runs as planned, but the output is
incorrect, you have a logic error. That is why you need a test plan! And why you
actually run through it!

– When your program crashes it is a run-time error. You need a test plan and
testing.

– Finally if the input data is incorrect in some way, then your output will be
incorrect also: a GIGO error.

• 2

RAM
• When your program runs, the OS allocates RAM for its use. [1]

• This RAM is divided up into different sections for use in different ways by
your program. The layout shown below can be different for different
architectures and OS. Covered in your first year unit.

• 3

• The program stack stores variables,
parameters etc. that are defined when
you write your program.

• The program heap is used for memory
locations that are defined as your
program runs: dynamically allocated
variables.

Pointers

• Pointers cause more heartache than is really necessary. [1]

• All they are is a variable that stores the address of another

variable.

• Of course it is also possible to continue this ad-infinitum,

which means that you can end up with an address, of an

address, of an address...

• But in actually fact it is rare that you go beyond one, or two,

levels of dereference.

• 4

Declaring Pointers
0x00000000

...

Your program stack

ptr ??

Your program heap

• 5

int f1()

{ // local vars on stack

int *ptr;

}

• This declares a pointer to an integer
sized memory location.

• It does not allocate the memory
location for you to store the actual
data.

• Memory to store ptr itself but not
the data. [1]

• Contents of ptr is whatever happens
to be there by chance.

•Dynamic memory

•Available for use with

“new” instruction

Declaring Pointers
0x00000000

...

Your program stack

ptr ??

Your program heap

• 6

int *ptr;

• This means that trying to use the
memory location contained in the
pointer variable will crash the
program or cause strange events.

• This is because the contents of ptr
could be anything; i.e. it could be
pointing anywhere in memory. [1]

??

Declaring Pointers Safely

0x00000000 0

...

Your program stack

ptr 0x00000000

Your program heap

• 7

int *ptr = NULL;

• To prevent accidental alteration of
anything important, pointers should
always be initialised to NULL.

• The zeroth memory location of RAM
is kept empty for this reason. [1]

Allocating Memory

0x00000000 0

...

Your program stack

ptr 0xaf556808

0xaf556808

Your program heap

• 8

int *ptr = NULL;

ptr = new int; [1]

• The allocation of memory is then
done with the new keyword.

• This allocates a memory location on
the heap of the given size (in this
case an int).

Using Pointers

0x00000000 0

...

Your program stack

ptr 0xaf556808

0xaf556808 345

Your program heap

• 9

int *ptr = NULL;

ptr = new int;

*ptr = 345;

• To place a value in the memory
location, the * dereferencing
operator is used. [1]

Using Pointers

0x00000000 0

...

Your program stack

ptr 0xaf556808

0xaf556808 345

Your program heap

• 10

int *ptr = NULL;

ptr = new int;

*ptr = 345;

cout << *ptr << endl;

• This is also used for accessing the
location for output etc.

Where is the Pointer Pointing?

0x00000000 0

...

Your program stack

ptr 0xaf556808

0xaf556808 345

Your program heap

• 11

int *ptr = NULL;

ptr = new int;

*ptr = 345;

cout << ptr << endl;

• You could also output the location of
the memory being used, rather than
the contents of the memory
location.

Releasing Memory

0x00000000 0

...

Your program stack

ptr 0xaf556808

0xaf556808 345

Your program heap

• 12

int *ptr = NULL;

ptr = new int;

...

delete ptr;

• Every new must have a matching
delete, so that memory is
released back to the OS.

Releasing Memory Safely

0x00000000 0

...

Your program stack

ptr 0x00000000

0xaf556808 345

Your program heap

• 13

int *ptr = NULL;

ptr = new int;

...

delete ptr;

ptr = NULL; // to be safe

• Followed, of course, by reassigning
the pointer to NULL, so that it does
not point to memory over which it
no longer should have control.

Pointing at Other Variables

0x00000000 0

...

Your program stack

num 10

ptr 0x00000000

Your program heap

• 14

int *ptr = NULL;

int num = 10;

• Pointers can also point at other
variables:

Pointing at Other Variables

0x00000000 0

...

Your program stack

num 10

ptr 0x00000000

Your program heap

• 15

int *ptr = NULL;

int num = 10;

ptr = #

• Pointers can also point at other
variables.

Pointing at Other Variables

0x00000000 0

...

Your program stack

num 23

ptr 0xacf56124

Your program heap

• 16

int *ptr = NULL;

int num = 10;

ptr = #

*ptr = 23;

• And change their value.

Memory Leaks

0x00000000 0

...

Your program stack

ptr 0xaf55721f

num 12

0xaf55721f 345

Your program heap

• 17

int num = 12;

int *ptr = new int;

*ptr = 345;

• However care must be taken not to
cause a memory leak.

Memory Leaks

0x00000000 0

...

Your program stack

ptr 0xaf556808

num 12

0xaf55721f 345

Your program heap

• 18

int num = 12;

int *ptr = new int;

*ptr = 345;

ptr = #

• However care must be taken not to
cause a memory leak.

Memory Leaks

0x00000000 0

...

Your program stack

ptr 0xaf556808

num 12

0xaf55721f 345

Your program heap

• 19

int num = 12;

int *ptr = new int;

*ptr = 345;

ptr = #

• The circled memory location is ‘lost’
until the program ends.

Avoiding Memory Leaks

0x00000000 0

...

Your program stack

ptr 0xaf556808

num 12

0xaf55721f 345

Your program heap

• 20

int num = 12;

int *ptr = new int;

*ptr = 345;

delete ptr;

ptr = #

• Of course, there should have been a
delete between the last two lines of
code.

• This releases the memory back to
the OS again.

Care with delete

0x00000000 0

...

Your program stack

ptr 0xaf556808

num 12

0xaf55721f 345

Your program heap

• 21

int num = 12;

int *ptr = new int;

*ptr = 345;

ptr = # //num not on heap

delete ptr; // oops

• But beware where you put it: trying
to delete stack memory will cause
trouble.

Uses of Pointers

• There are two main uses for pointers.

• The first is for array and string access.

• The second is where pointers are used to create lists or
trees: data structures where the next piece of data can
only be found by traversing a link from the last piece:

• 22

Malik: Chapter on Pointer - exercises
• 2. Given the declaration:

• int x;
• int *p;
• int *q;

• Mark the following statements as valid or invalid.
• If a statement is invalid, explain why:

• a. p = q;
• b. *p = 56;
• c. p = x;
• d. *p = *q;
• e. q = &x;
• f. *p = q;

• 23

• 3. What is the output of the following C++ code?

• int x;
• int y;
• int *p = &x;
• int *q = &y;

• *p = 35;
• *q = 98;
• *p = *q;

• cout « x « " " « y « endl;
• cout « *p « " " « *q « endl;

• 24

• 4. What is the output of the following C++ code?

• int x;
• int y;
• int *p = &x;
• int *q = &y;
• x = 35;
• y = 46;
• p = q;
• *p = 18;
• cout « x « " " « y « endl;
• cout « *p « " " « *q « endl;

• 25

Readings

• Textbook (by Malik): Chapter on Pointers, Classes, .. etc. See
subsections on Pointer Data Type and Pointer Variables;
Address of operator; Dereferencing operator. A different
edition may have a different chapter number and pages.

• 101 Coding Standards: Rules 51 and 52. It is one of the
important references (see unit outline) we use in the unit. See
101 C++ Coding Standards online resource. [1]

• Watch the videos on pointers “Video Lecture on
Pointers.htm” Function pointers are covered when we cover
the tree data structure later on.

• Find out about “RAII”. Why is the RAII concept so important
that you should not violate it?

• 26

http://prospero.murdoch.edu.au/search~S10?/aSutter%2C+Herb/asutter+herb/-3%2C-1%2C0%2CB/frameset&FF=asutter+herb&2%2C%2C3

Videos
• Pointers - Stanford University

https://www.youtube.com/watch?v=H4MQXBF6FN4

• Bits and bytes; floating point representation -
Stanford University
https://www.youtube.com/watch?v=jTSvthW34GU

• How pointers get used; usage of void pointers
https://www.youtube.com/watch?v=_eR4rxnM7Lc

https://www.youtube.com/watch?v=H4MQXBF6FN4
https://www.youtube.com/watch?v=jTSvthW34GU
https://www.youtube.com/watch?v=_eR4rxnM7Lc

Parameters

• Parameters can be passed in four main ways.

– by value

– by reference

– by constant reference

– by pointer

• 28

Value Parameters

void Func1 (int number);

...

int num = 8;

Your program stack

num 8

• 29

number is a value
parameter

Value Parameters

void Func1 (int number);

...

int num = 8;

Func1 (num);

Your program stack

number 8

Data for Func1

num 8

• 30

number is given
an initial value

from the variable
num

Value Parameters

void Func1 (int number);

...

int num = 8;

Func1 (num);

Your program stack

number 10

Data for Func1

num 8

• 31

number is
changed to 10

within the Func1
function.

Value Parameters

void Func1 (int number);

...

int num = 8;

Func1 (num);

Your program stack

num 8

• 32

But num remains 8
after the function

has completed

Reference Parameters

void Func2 (int &number); // [1]

...

int num = 8;

Your program stack

num 8

• 33

number is a
reference

parameter i.e.
another name for

something

Reference Parameters

void Func2 (int &number);

...

int num = 8;

Func2 (num);

Your program stack

Data for Func2

number num 8

• 34

number is just
another reference
to (name for) the

location also called
num

Reference Parameters

void Func2 (int &number){

number = 10; //changes number to 10

}

//--------------------

int num = 8;

Func2 (num);

Your program stack

Data for Func2

number num 10

• 35

when number is
changed it changes
the value of num,
because they are
really the same

thing.

Reference Parameters

void Func2 (int &number);

...

int num = 8;

Func2 (num);

Your program stack

num 10

• 36

num remains 10
after the function

has completed

Constant Reference Parameters

void Func3 (const int &number);

...

int num = 8;

Your program stack

num 8

• 37

number is a
constant reference

parameter

Constant Reference Parameters

void Func3 (const int &number);

...

int num = 8;

Func3 (num);

Your program stack

Data for Func3

number num (const) 8

• 38

number refers to
the location also
called num,but
number is locked
as a constant while
Func3 is running

Constant Reference Parameters

void Func3 (const int &number);

...// attempt to change number

...// will not compile – good

int num = 8;

Func3 (num);

Your program stack

Data for Func3

number num (const) 8

• 39

If Func3 tries to
alter number, the
program will not

compile!

Constant Reference Parameters

void Func3 (const int &number);

...

int num = 8;

Func3 (num);

Your program stack

num 8

• 40

Therefore num will
remain as 8 as the
function can’t run
(wouldn’t compile)

Pointer Parameters

void Func4 (int *ptr);

...

int num = 8;

Your program stack

num 8

• 41

ptr is a pointer
parameter,

therefore within
Func4, ptr is a

pointer not an
integer

Pointer Parameters

void Func4 (int *ptr);

...

int num = 8;

Func4 (&num);

Your program stack

ptr &num

Data for Func4

*ptr num 8

• 42

ptr stores the
address of num

Pointer Parameters

void Func4 (int *ptr);

...

int num = 8;

Func4 (&num);

Your program stack

ptr &num

Data for Func4

*ptr num 8

• 43

Therefore *ptr
becomes a

reference to num

Pointer Parameters

void Func4 (int *ptr);

...

int num = 8;

Func4 (&num);

Your program stack

ptr &num

Data for Func4

*ptr num 10

• 44

If Func4 sets
*ptr to 10, then
num is changed to

10

Pointer Parameters

void Func4 (int *ptr);

...

int num = 8;

Func4 (&num);

Your program stack

num 10

• 45

num remains 10
after the function

has completed
•For further work (not necessary for
this unit), find out about smart pointers,
auto_ptr, and Opaque pointer. [1]

Pointers and References

• Find out about the following:
• It is possible to declare a pointer with no initial

value? Is it possible to declare a reference which
does not contain an initial value?

• A pointer variable can be changed to point to
something else. Can this be done with a
reference?

• A pointer can be set to contain the NULL (or
nullptr) value. Can you make a reference NULL
(or nullptr)? [1]

• Can you do pointer like arithmetic on references?

• 46

Readings

• Chapter(s) on User-Defined Functions, section
on Value Returning Functions; section on
Reference variables as parameters.

• If you are using another edition of the
textbook, look up the chapter title and section
number in the contents page.

• 47

